Definition Transition dipole moment




1 definition

1.1 single charged particle
1.2 multiple charged particles
1.3 in terms of momentum





definition
a single charged particle

for transition single charged particle changes state




|


ψ

a





{\displaystyle |\psi _{a}\rangle }






|


ψ

b





{\displaystyle |\psi _{b}\rangle }

, transition dipole moment




(t.d.m.)



{\displaystyle {\text{(t.d.m.)}}}

is







(

t.d.m. 

a

b
)
=


ψ

b



|

(
q

r

)

|


ψ

a



=
q


ψ

b





(

r

)


r



ψ

a


(

r

)


d

3



r



{\displaystyle ({\text{t.d.m. }}a\rightarrow b)=\langle \psi _{b}|(q\mathbf {r} )|\psi _{a}\rangle =q\int \psi _{b}^{*}(\mathbf {r} )\,\mathbf {r} \,\psi _{a}(\mathbf {r} )\,d^{3}\mathbf {r} }



where q particle s charge, r position, , integral on space (





d

3



r



{\displaystyle \int d^{3}\mathbf {r} }

shorthand




d
x

d
y

d
z


{\displaystyle \iiint dx\,dy\,dz}

). transition dipole moment vector; example x-component is







(

x-component of t.d.m. 

a

b
)
=


ψ

b



|

(
q
x
)

|


ψ

a



=
q


ψ

b





(

r

)

x


ψ

a


(

r

)


d

3



r



{\displaystyle ({\text{x-component of t.d.m. }}a\rightarrow b)=\langle \psi _{b}|(qx)|\psi _{a}\rangle =q\int \psi _{b}^{*}(\mathbf {r} )\,x\,\psi _{a}(\mathbf {r} )\,d^{3}\mathbf {r} }



in other words, transition dipole moment off-diagonal matrix element of position operator, multiplied particle s charge.


multiple charged particles

when transition involves more 1 charged particle, transition dipole moment defined in analogous way electric dipole moment: sum of positions, weighted charge. if ith particle has charge qi , position operator ri, transition dipole moment is:







(

t.d.m. 

a

b
)
=


ψ

b



|

(

q

1




r


1


+

q

2




r


2


+

)

|


ψ

a



=


{\displaystyle ({\text{t.d.m. }}a\rightarrow b)=\langle \psi _{b}|(q_{1}\mathbf {r} _{1}+q_{2}\mathbf {r} _{2}+\cdots )|\psi _{a}\rangle =}







=


ψ

b





(


r


1


,


r


2


,

)

(

q

1




r


1


+

q

2




r


2


+

)


ψ

a


(


r


1


,


r


2


,

)


d

3




r


1




d

3




r


2





{\displaystyle =\int \psi _{b}^{*}(\mathbf {r} _{1},\mathbf {r} _{2},\ldots )\,(q_{1}\mathbf {r} _{1}+q_{2}\mathbf {r} _{2}+\cdots )\,\psi _{a}(\mathbf {r} _{1},\mathbf {r} _{2},\ldots )\,d^{3}\mathbf {r} _{1}\,d^{3}\mathbf {r} _{2}\cdots }





in terms of momentum

for single, nonrelativistic particle of mass m, in 0 magnetic field, transition dipole moment can alternatively written in terms of momentum operator, using relationship









ψ

a



|


r


|


ψ

b



=



i



(

e

b




e

a


)
m





ψ

a



|


p


|


ψ

b





{\displaystyle \langle \psi _{a}|\mathbf {r} |\psi _{b}\rangle ={\frac {i\hbar }{(e_{b}-e_{a})m}}\langle \psi _{a}|\mathbf {p} |\psi _{b}\rangle }



this relationship can proven starting commutation relation between position x , hamiltonian h:







[
h
,
x
]
=

[



p

2



2
m



+
v
(
x
,
y
,
z
)
,
x
]

=

[



p

2



2
m



,
x
]

=


1

2
m



(

p

x


[

p

x


,
x
]
+
[

p

x


,
x
]

p

x


)
=

i


p

x



/

m


{\displaystyle [h,x]=\left[{\frac {p^{2}}{2m}}+v(x,y,z),x\right]=\left[{\frac {p^{2}}{2m}},x\right]={\frac {1}{2m}}(p_{x}[p_{x},x]+[p_{x},x]p_{x})=-i\hbar p_{x}/m}



then









ψ

a



|

(
h
x

x
h
)

|


ψ

b



=




i


m




ψ

a



|


p

x



|


ψ

b





{\displaystyle \langle \psi _{a}|(hx-xh)|\psi _{b}\rangle ={\frac {-i\hbar }{m}}\langle \psi _{a}|p_{x}|\psi _{b}\rangle }



however, assuming ψa , ψb energy eigenstates energy ea , eb, can write









ψ

a



|

(
h
x

x
h
)

|


ψ

b



=
(


ψ

a



|

h
)
x

|


ψ

b






ψ

a



|

x
(
h

|


ψ

b



)
=
(

e

a




e

b


)


ψ

a



|

x

|


ψ

b





{\displaystyle \langle \psi _{a}|(hx-xh)|\psi _{b}\rangle =(\langle \psi _{a}|h)x|\psi _{b}\rangle -\langle \psi _{a}|x(h|\psi _{b}\rangle )=(e_{a}-e_{b})\langle \psi _{a}|x|\psi _{b}\rangle }



similar relations hold y , z, give relationship above.








Comments

Popular posts from this blog

Ancient Laconophilia Laconophilia

Ballysillan and Upper Crumlin Road Crumlin Road

Benefits Al-Anon/Alateen