Construction Poincaré residue
1 construction
1.1 preliminary definition
1.2 definition of residue
1.3 algorithm computing class
construction
preliminary definition
given setup above, let
a
k
p
(
x
)
{\displaystyle a_{k}^{p}(x)}
space of meromorphic
p
{\displaystyle p}
-forms on
p
n
{\displaystyle \mathbb {p} ^{n}}
have poles of order upto
k
{\displaystyle k}
. notice standard differential
d
{\displaystyle d}
sends
d
:
a
k
−
1
p
−
1
(
x
)
→
a
k
p
(
x
)
{\displaystyle d:a_{k-1}^{p-1}(x)\to a_{k}^{p}(x)}
define
k
k
(
x
)
=
a
k
p
(
x
)
d
a
k
−
1
p
−
1
(
x
)
{\displaystyle {\mathcal {k}}_{k}(x)={\frac {a_{k}^{p}(x)}{da_{k-1}^{p-1}(x)}}}
as rational de-rham cohomology groups.
definition of residue
consider
(
n
−
1
)
{\displaystyle (n-1)}
-cycle
γ
∈
h
n
−
1
(
x
;
c
)
{\displaystyle \gamma \in h_{n-1}(x;\mathbb {c} )}
. if take tube
t
(
γ
)
{\displaystyle t(\gamma )}
around
γ
{\displaystyle \gamma }
(which locally isomorphic
γ
×
s
1
{\displaystyle \gamma \times s^{1}}
) lies within complement of
x
{\displaystyle x}
. since
n
{\displaystyle n}
-cycle, can integrate
ω
{\displaystyle \omega }
, number. if write as
∫
t
(
−
)
ω
:
h
n
−
1
(
x
;
c
)
→
c
{\displaystyle \int _{t(-)}\omega :h_{n-1}(x;\mathbb {c} )\to \mathbb {c} }
then linear transformation on homology classes. poincare duality implies cohomology class
res
(
ω
)
∈
h
n
−
1
(
x
;
c
)
{\displaystyle \operatorname {res} (\omega )\in h^{n-1}(x;\mathbb {c} )}
which call residue. notice if restrict case
n
=
1
{\displaystyle n=1}
, standard residue complex analysis (although extend our meromorphic
1
{\displaystyle 1}
-form of
p
1
{\displaystyle \mathbb {p} ^{1}}
.
algorithm computing class
there simple recursive method computing residues reduces classical case of
n
=
1
{\displaystyle n=1}
. recall residue of
1
{\displaystyle 1}
-form
res
(
d
z
z
+
a
)
=
d
z
z
{\displaystyle \operatorname {res} \left({\frac {dz}{z}}+a\right)={\frac {dz}{z}}}
if consider chart containing
x
{\displaystyle x}
vanishing locus of
w
{\displaystyle w}
, can write meromorphic
n
{\displaystyle n}
-form pole on
x
{\displaystyle x}
as
d
w
w
k
∧
ρ
{\displaystyle {\frac {dw}{w^{k}}}\wedge \rho }
then can write out as
1
(
k
−
1
)
(
d
ρ
w
k
−
1
+
d
(
ρ
w
k
−
1
)
)
{\displaystyle {\frac {1}{(k-1)}}\left({\frac {d\rho }{w^{k-1}}}+d\left({\frac {\rho }{w^{k-1}}}\right)\right)}
this shows 2 cohomology classes
[
d
w
w
k
∧
ρ
]
=
[
d
ρ
(
k
−
1
)
w
k
−
1
]
{\displaystyle \left[{\frac {dw}{w^{k}}}\wedge \rho \right]=\left[{\frac {d\rho }{(k-1)w^{k-1}}}\right]}
are equal. have reduced order of pole hence can use recursion pole of order
1
{\displaystyle 1}
, define residue of
ω
{\displaystyle \omega }
as
res
(
α
∧
d
w
w
+
β
)
=
α
|
x
{\displaystyle \operatorname {res} \left(\alpha \wedge {\frac {dw}{w}}+\beta \right)=\alpha |_{x}}
Comments
Post a Comment