From the Cartesian equation Pedal curve



pedal curve (red) of ellipse (black). here a=2 , b=1 equation of pedal curve 4x+y=(x+y)


for example, ellipse










x

2



a

2




+



y

2



b

2




=
1


{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1}



the tangent line @ r=(x0, y0) is











x

0


x


a

2




+




y

0


y


b

2




=
1


{\displaystyle {\frac {x_{0}x}{a^{2}}}+{\frac {y_{0}y}{b^{2}}}=1}



and writing in form given above requires that










x

0



a

2




=



cos

α

p


,




y

0



b

2




=



sin

α

p


.


{\displaystyle {\frac {x_{0}}{a^{2}}}={\frac {\cos \alpha }{p}},\,{\frac {y_{0}}{b^{2}}}={\frac {\sin \alpha }{p}}.}



the equation ellipse can used eliminate x0 , y0 giving








a

2



cos

2



α
+

b

2



sin

2



α
=

p

2


,



{\displaystyle a^{2}\cos ^{2}\alpha +b^{2}\sin ^{2}\alpha =p^{2},\,}



and converting (r, θ) gives








a

2



cos

2



θ
+

b

2



sin

2



θ
=

r

2


,



{\displaystyle a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta =r^{2},\,}



as polar equation pedal. converted cartesian equation as








a

2



x

2


+

b

2



y

2


=
(

x

2


+

y

2



)

2


.



{\displaystyle a^{2}x^{2}+b^{2}y^{2}=(x^{2}+y^{2})^{2}.\,}










Comments

Popular posts from this blog

Ancient Laconophilia Laconophilia

Ballysillan and Upper Crumlin Road Crumlin Road

Benefits Al-Anon/Alateen