Equations Pedal curve




1 equations

1.1 cartesian equation
1.2 polar equation
1.3 pedal equation
1.4 parametric equations





equations
from cartesian equation

take p origin. curve given equation f(x, y)=0, if equation of tangent line @ r=(x0, y0) written in form







cos

α
x
+
sin

α
y
=
p


{\displaystyle \cos \alpha x+\sin \alpha y=p}



then vector (cos α, sin α) parallel segment px, , length of px, distance tangent line origin, p. x represented polar coordinates (p, α) , replacing (p, α) (r, θ) produces polar equation pedal curve.



pedal curve (red) of ellipse (black). here a=2 , b=1 equation of pedal curve 4x+y=(x+y)


for example, ellipse










x

2



a

2




+



y

2



b

2




=
1


{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1}



the tangent line @ r=(x0, y0) is











x

0


x


a

2




+




y

0


y


b

2




=
1


{\displaystyle {\frac {x_{0}x}{a^{2}}}+{\frac {y_{0}y}{b^{2}}}=1}



and writing in form given above requires that










x

0



a

2




=



cos

α

p


,




y

0



b

2




=



sin

α

p


.


{\displaystyle {\frac {x_{0}}{a^{2}}}={\frac {\cos \alpha }{p}},\,{\frac {y_{0}}{b^{2}}}={\frac {\sin \alpha }{p}}.}



the equation ellipse can used eliminate x0 , y0 giving








a

2



cos

2



α
+

b

2



sin

2



α
=

p

2


,



{\displaystyle a^{2}\cos ^{2}\alpha +b^{2}\sin ^{2}\alpha =p^{2},\,}



and converting (r, θ) gives








a

2



cos

2



θ
+

b

2



sin

2



θ
=

r

2


,



{\displaystyle a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta =r^{2},\,}



as polar equation pedal. converted cartesian equation as








a

2



x

2


+

b

2



y

2


=
(

x

2


+

y

2



)

2


.



{\displaystyle a^{2}x^{2}+b^{2}y^{2}=(x^{2}+y^{2})^{2}.\,}




from polar equation

for p origin , c given in polar coordinates r = f(θ). let r=(r, θ) point on curve , let x=(p, α) corresponding point on pedal curve. let ψ denote angle between tangent line , radius vector, known polar tangential angle. given by







r
=



d
r


d
θ



tan

ψ
.


{\displaystyle r={\frac {dr}{d\theta }}\tan \psi .}



then







p
=
r
sin

ψ


{\displaystyle p=r\sin \psi }



and







α
=
θ
+
ψ



π
2


.


{\displaystyle \alpha =\theta +\psi -{\frac {\pi }{2}}.}



these equations may used produce equation in p , α which, when translated r , θ gives polar equation pedal curve.


for example, let curve circle given r = cos θ. then







a
cos

θ
=

a
sin

θ
tan

ψ


{\displaystyle a\cos \theta =-a\sin \theta \tan \psi }



so







tan

ψ
=

cot

θ
,

ψ
=


π
2


+
θ
,
α
=
2
θ
.


{\displaystyle \tan \psi =-\cot \theta ,\,\psi ={\frac {\pi }{2}}+\theta ,\alpha =2\theta .}



also







p
=
r
sin

ψ
 
=
r
cos

θ
=
a

cos

2



θ
=
a

cos

2





α
2


.


{\displaystyle p=r\sin \psi \ =r\cos \theta =a\cos ^{2}\theta =a\cos ^{2}{\alpha \over 2}.}



so polar equation of pedal is







r
=
a

cos

2





θ
2


.


{\displaystyle r=a\cos ^{2}{\theta \over 2}.}



from pedal equation

the pedal equations of curve , pedal closely related. if p taken pedal point , origin can shown angle ψ between curve , radius vector @ point r equal corresponding angle pedal curve @ point x. if p length of perpendicular drawn p tangent of curve (i.e. px) , q length of corresponding perpendicular drawn p tangent pedal, similar triangles









p
r


=


q
p


.


{\displaystyle {\frac {p}{r}}={\frac {q}{p}}.}



it follows if pedal equation of curve f(p,r)=0 pedal equation pedal curve is







f
(
r
,



r

2


p


)
=
0


{\displaystyle f(r,{\frac {r^{2}}{p}})=0}



from positive , negative pedals can computed if pedal equation of curve known.


from parametric equations

contrapedal of same ellipse



pedal of evolute of ellipse : same contrapedal of original ellipse


let






v




=
p

r


{\displaystyle {\vec {v}}=p-r}

vector r p , write










v




=




v








+




v










{\displaystyle {\vec {v}}={\vec {v}}_{\parallel }+{\vec {v}}_{\perp }}

,

the tangential , normal components of






v






{\displaystyle {\vec {v}}}

respect curve.







v










{\displaystyle {\vec {v}}_{\parallel }}

vector r x position of x can computed.


specifically, if c parametrization of curve then







t

c
(
t
)
+




c


(
t
)

(
p

c
(
t
)
)



|


c


(
t
)


|


2






c


(
t
)


{\displaystyle t\mapsto c(t)+{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}



parametrises pedal curve (disregarding points c 0 or undefined).


for parametrically defined curve, pedal curve pedal point (0;0) defined as







x
[
x
,
y
]
=



(
x

y



y

x


)

y





x



2



+

y



2








{\displaystyle x[x,y]={\frac {(xy -yx )y }{x ^{2}+y ^{2}}}}








y
[
x
,
y
]
=



(
y

x



x

y


)

x





x



2



+

y



2






.


{\displaystyle y[x,y]={\frac {(yx -xy )x }{x ^{2}+y ^{2}}}.}



the contrapedal curve given by:







t

p





c


(
t
)

(
p

c
(
t
)
)



|


c


(
t
)


|


2






c


(
t
)


{\displaystyle t\mapsto p-{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}



with same pedal point, contrapedal curve pedal curve of evolute of given curve.








Comments

Popular posts from this blog

Ancient Laconophilia Laconophilia

Ballysillan and Upper Crumlin Road Crumlin Road

Benefits Al-Anon/Alateen