Equations Pedal curve
1 equations
1.1 cartesian equation
1.2 polar equation
1.3 pedal equation
1.4 parametric equations
equations
from cartesian equation
take p origin. curve given equation f(x, y)=0, if equation of tangent line @ r=(x0, y0) written in form
cos
α
x
+
sin
α
y
=
p
{\displaystyle \cos \alpha x+\sin \alpha y=p}
then vector (cos α, sin α) parallel segment px, , length of px, distance tangent line origin, p. x represented polar coordinates (p, α) , replacing (p, α) (r, θ) produces polar equation pedal curve.
pedal curve (red) of ellipse (black). here a=2 , b=1 equation of pedal curve 4x+y=(x+y)
for example, ellipse
x
2
a
2
+
y
2
b
2
=
1
{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1}
the tangent line @ r=(x0, y0) is
x
0
x
a
2
+
y
0
y
b
2
=
1
{\displaystyle {\frac {x_{0}x}{a^{2}}}+{\frac {y_{0}y}{b^{2}}}=1}
and writing in form given above requires that
x
0
a
2
=
cos
α
p
,
y
0
b
2
=
sin
α
p
.
{\displaystyle {\frac {x_{0}}{a^{2}}}={\frac {\cos \alpha }{p}},\,{\frac {y_{0}}{b^{2}}}={\frac {\sin \alpha }{p}}.}
the equation ellipse can used eliminate x0 , y0 giving
a
2
cos
2
α
+
b
2
sin
2
α
=
p
2
,
{\displaystyle a^{2}\cos ^{2}\alpha +b^{2}\sin ^{2}\alpha =p^{2},\,}
and converting (r, θ) gives
a
2
cos
2
θ
+
b
2
sin
2
θ
=
r
2
,
{\displaystyle a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta =r^{2},\,}
as polar equation pedal. converted cartesian equation as
a
2
x
2
+
b
2
y
2
=
(
x
2
+
y
2
)
2
.
{\displaystyle a^{2}x^{2}+b^{2}y^{2}=(x^{2}+y^{2})^{2}.\,}
from polar equation
for p origin , c given in polar coordinates r = f(θ). let r=(r, θ) point on curve , let x=(p, α) corresponding point on pedal curve. let ψ denote angle between tangent line , radius vector, known polar tangential angle. given by
r
=
d
r
d
θ
tan
ψ
.
{\displaystyle r={\frac {dr}{d\theta }}\tan \psi .}
then
p
=
r
sin
ψ
{\displaystyle p=r\sin \psi }
and
α
=
θ
+
ψ
−
π
2
.
{\displaystyle \alpha =\theta +\psi -{\frac {\pi }{2}}.}
these equations may used produce equation in p , α which, when translated r , θ gives polar equation pedal curve.
for example, let curve circle given r = cos θ. then
a
cos
θ
=
−
a
sin
θ
tan
ψ
{\displaystyle a\cos \theta =-a\sin \theta \tan \psi }
so
tan
ψ
=
−
cot
θ
,
ψ
=
π
2
+
θ
,
α
=
2
θ
.
{\displaystyle \tan \psi =-\cot \theta ,\,\psi ={\frac {\pi }{2}}+\theta ,\alpha =2\theta .}
also
p
=
r
sin
ψ
=
r
cos
θ
=
a
cos
2
θ
=
a
cos
2
α
2
.
{\displaystyle p=r\sin \psi \ =r\cos \theta =a\cos ^{2}\theta =a\cos ^{2}{\alpha \over 2}.}
so polar equation of pedal is
r
=
a
cos
2
θ
2
.
{\displaystyle r=a\cos ^{2}{\theta \over 2}.}
from pedal equation
the pedal equations of curve , pedal closely related. if p taken pedal point , origin can shown angle ψ between curve , radius vector @ point r equal corresponding angle pedal curve @ point x. if p length of perpendicular drawn p tangent of curve (i.e. px) , q length of corresponding perpendicular drawn p tangent pedal, similar triangles
p
r
=
q
p
.
{\displaystyle {\frac {p}{r}}={\frac {q}{p}}.}
it follows if pedal equation of curve f(p,r)=0 pedal equation pedal curve is
f
(
r
,
r
2
p
)
=
0
{\displaystyle f(r,{\frac {r^{2}}{p}})=0}
from positive , negative pedals can computed if pedal equation of curve known.
from parametric equations
contrapedal of same ellipse
pedal of evolute of ellipse : same contrapedal of original ellipse
let
v
→
=
p
−
r
{\displaystyle {\vec {v}}=p-r}
vector r p , write
v
→
=
v
→
∥
+
v
→
⊥
{\displaystyle {\vec {v}}={\vec {v}}_{\parallel }+{\vec {v}}_{\perp }}
,
the tangential , normal components of
v
→
{\displaystyle {\vec {v}}}
respect curve.
v
→
∥
{\displaystyle {\vec {v}}_{\parallel }}
vector r x position of x can computed.
specifically, if c parametrization of curve then
t
↦
c
(
t
)
+
c
′
(
t
)
⋅
(
p
−
c
(
t
)
)
|
c
′
(
t
)
|
2
c
′
(
t
)
{\displaystyle t\mapsto c(t)+{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}
parametrises pedal curve (disregarding points c 0 or undefined).
for parametrically defined curve, pedal curve pedal point (0;0) defined as
x
[
x
,
y
]
=
(
x
y
′
−
y
x
′
)
y
′
x
′
2
+
y
′
2
{\displaystyle x[x,y]={\frac {(xy -yx )y }{x ^{2}+y ^{2}}}}
y
[
x
,
y
]
=
(
y
x
′
−
x
y
′
)
x
′
x
′
2
+
y
′
2
.
{\displaystyle y[x,y]={\frac {(yx -xy )x }{x ^{2}+y ^{2}}}.}
the contrapedal curve given by:
t
↦
p
−
c
′
(
t
)
⋅
(
p
−
c
(
t
)
)
|
c
′
(
t
)
|
2
c
′
(
t
)
{\displaystyle t\mapsto p-{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}
with same pedal point, contrapedal curve pedal curve of evolute of given curve.
Comments
Post a Comment