From parametric equations Pedal curve
contrapedal of same ellipse
pedal of evolute of ellipse : same contrapedal of original ellipse
let
v
→
=
p
−
r
{\displaystyle {\vec {v}}=p-r}
vector r p , write
v
→
=
v
→
∥
+
v
→
⊥
{\displaystyle {\vec {v}}={\vec {v}}_{\parallel }+{\vec {v}}_{\perp }}
,
the tangential , normal components of
v
→
{\displaystyle {\vec {v}}}
respect curve.
v
→
∥
{\displaystyle {\vec {v}}_{\parallel }}
vector r x position of x can computed.
specifically, if c parametrization of curve then
t
↦
c
(
t
)
+
c
′
(
t
)
⋅
(
p
−
c
(
t
)
)
|
c
′
(
t
)
|
2
c
′
(
t
)
{\displaystyle t\mapsto c(t)+{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}
parametrises pedal curve (disregarding points c 0 or undefined).
for parametrically defined curve, pedal curve pedal point (0;0) defined as
x
[
x
,
y
]
=
(
x
y
′
−
y
x
′
)
y
′
x
′
2
+
y
′
2
{\displaystyle x[x,y]={\frac {(xy -yx )y }{x ^{2}+y ^{2}}}}
y
[
x
,
y
]
=
(
y
x
′
−
x
y
′
)
x
′
x
′
2
+
y
′
2
.
{\displaystyle y[x,y]={\frac {(yx -xy )x }{x ^{2}+y ^{2}}}.}
the contrapedal curve given by:
t
↦
p
−
c
′
(
t
)
⋅
(
p
−
c
(
t
)
)
|
c
′
(
t
)
|
2
c
′
(
t
)
{\displaystyle t\mapsto p-{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}
with same pedal point, contrapedal curve pedal curve of evolute of given curve.
Comments
Post a Comment