From parametric equations Pedal curve



contrapedal of same ellipse



pedal of evolute of ellipse : same contrapedal of original ellipse


let






v




=
p

r


{\displaystyle {\vec {v}}=p-r}

vector r p , write










v




=




v








+




v










{\displaystyle {\vec {v}}={\vec {v}}_{\parallel }+{\vec {v}}_{\perp }}

,

the tangential , normal components of






v






{\displaystyle {\vec {v}}}

respect curve.







v










{\displaystyle {\vec {v}}_{\parallel }}

vector r x position of x can computed.


specifically, if c parametrization of curve then







t

c
(
t
)
+




c


(
t
)

(
p

c
(
t
)
)



|


c


(
t
)


|


2






c


(
t
)


{\displaystyle t\mapsto c(t)+{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}



parametrises pedal curve (disregarding points c 0 or undefined).


for parametrically defined curve, pedal curve pedal point (0;0) defined as







x
[
x
,
y
]
=



(
x

y



y

x


)

y





x



2



+

y



2








{\displaystyle x[x,y]={\frac {(xy -yx )y }{x ^{2}+y ^{2}}}}








y
[
x
,
y
]
=



(
y

x



x

y


)

x





x



2



+

y



2






.


{\displaystyle y[x,y]={\frac {(yx -xy )x }{x ^{2}+y ^{2}}}.}



the contrapedal curve given by:







t

p





c


(
t
)

(
p

c
(
t
)
)



|


c


(
t
)


|


2






c


(
t
)


{\displaystyle t\mapsto p-{c (t)\cdot (p-c(t)) \over |c (t)|^{2}}c (t)}



with same pedal point, contrapedal curve pedal curve of evolute of given curve.







Comments

Popular posts from this blog

Ancient Laconophilia Laconophilia

Ballysillan and Upper Crumlin Road Crumlin Road

Benefits Al-Anon/Alateen