Form of the IMF Initial mass function




1 form of imf

1.1 salpeter (1955)
1.2 miller-scalo (1979)
1.3 chabrier (2003)
1.4 kroupa (2001)
1.5 uncertainties





form of imf

initial mass function


the imf stated in terms of series of power laws,



n
(
m
)

d

m


{\displaystyle n(m)\mathrm {d} m}

(sometimes represented



ξ
(
m
)
Δ
m


{\displaystyle \xi (m)\delta m}

), number of stars masses in range



m


{\displaystyle m}





m
+

d

m


{\displaystyle m+\mathrm {d} m}

within specified volume of space, proportional




m


α




{\displaystyle m^{-\alpha }}

,



α


{\displaystyle \alpha }

dimensionless exponent. imf can inferred present day stellar luminosity function using stellar mass-luminosity relation model of how star formation rate varies time. commonly used forms of imf kroupa (2001) broken power law , chabrier (2003) log-normal.


salpeter (1955)

the imf of stars more massive our sun first quantified edwin salpeter in 1955. work favoured exponent of



α
=
2.35


{\displaystyle \alpha =2.35}

. form of imf called salpeter function or salpeter imf. shows number of stars in each mass range decreases rapidly increasing mass. salpeter initial mass function is







ξ
(
m
)
Δ
m
=

ξ

0




(


m

m


s
u
n





)



2.35



(



Δ
m


m


s
u
n





)

.


{\displaystyle \xi (m)\delta m=\xi _{0}\left({\frac {m}{m_{\mathrm {sun} }}}\right)^{-2.35}\left({\frac {\delta m}{m_{\mathrm {sun} }}}\right).}



where




ξ

0




{\displaystyle \xi _{0}}

constant relating local stellar density.


miller-scalo (1979)

later authors extended work below 1 solar mass (m☉). glenn e. miller , john m. scalo suggested imf flattened (approached



α
=
1


{\displaystyle \alpha =1}

) below 1 solar mass.


chabrier (2003)

chabrier 2003 individual stars:







ξ
(
m
)
Δ
m
=
0.158
(
1

/

(
ln

(
10
)
m
)
)
exp

[

(
log

(
m
)

log

(
0.08
)

)

2



/

(
2
×

0.69

2


)
]


{\displaystyle \xi (m)\delta m=0.158(1/(\ln(10)m))\exp[-(\log(m)-\log(0.08))^{2}/(2\times 0.69^{2})]}





m
<
1
,


{\displaystyle m<1,}






ξ
(
m
)
=
k

m


α




{\displaystyle \xi (m)=km^{-\alpha }}





m
>
1
,
α
=
2.3
±
0.3


{\displaystyle m>1,\alpha =2.3\pm 0.3}



chabrier 2003 stellar systems (e.g. binaries):







ξ
(
m
)
Δ
m
=
0.086
(
1

/

(
ln

(
10
)
m
)
)
exp

[

(
log

(
m
)

log

(
0.22
)

)

2



/

(
2
×

0.57

2


)
]


{\displaystyle \xi (m)\delta m=0.086(1/(\ln(10)m))\exp[-(\log(m)-\log(0.22))^{2}/(2\times 0.57^{2})]}





m
<
1
,


{\displaystyle m<1,}






ξ
(
m
)
=
k

m


α




{\displaystyle \xi (m)=km^{-\alpha }}





m
>
1
,
α
=
2.3
±
0.3


{\displaystyle m>1,\alpha =2.3\pm 0.3}



kroupa (2001)

pavel kroupa kept



α
=
2.3


{\displaystyle \alpha =2.3}

above half solar mass, introduced



α
=
1.3


{\displaystyle \alpha =1.3}

between 0.08-0.5 m☉ ,



α
=
0.3


{\displaystyle \alpha =0.3}

below 0.08 m☉.







ξ
(
m
)
=

m


α


,


{\displaystyle \xi (m)=m^{-\alpha },}






α
=
0.3


{\displaystyle \alpha =0.3}





m
<
0.08
,


{\displaystyle m<0.08,}






α
=
1.3


{\displaystyle \alpha =1.3}





0.08
<
m
<
0.5
,


{\displaystyle 0.08<m<0.5,}






α
=
2.3


{\displaystyle \alpha =2.3}





m
>
0.5


{\displaystyle m>0.5}



uncertainties

there large uncertainties concerning substellar region. in particular, classical assumption of single imf covering whole substellar , stellar mass range being questioned in favour of two-component imf account possible different formation modes of substellar objects. i.e. 1 imf covering brown dwarfs , very-low-mass stars on 1 hand, , ranging higher-mass brown dwarfs massive stars on other. note leads overlap region between 0.05 , 0.2 m☉ both formation modes may account bodies in mass range.








Comments

Popular posts from this blog

Ancient Laconophilia Laconophilia

Ballysillan and Upper Crumlin Road Crumlin Road

Benefits Al-Anon/Alateen